Sublabel-Accurate Discretization of Nonconvex Free-Discontinuity Problems Supplementary Material

نویسندگان

  • Thomas Möllenhoff
  • Daniel Cremers
چکیده

1 h (1− β)κ(γ j − γ i ) + βκ(γ j − γ i ) concavity ≤ 1 h κ((1− β)(γ j − γ i ) + β(γ j − γ i )) = 1 h κ(γ j − γ α i ) (5) Noticing that (2) is precisely (1) for α, β ∈ {0, 1} (as κ(a) = 0⇔ a = 0) completes the proof. Proposition 2. For convex one-homogeneous η the discretization with piecewise constant φt and φx leads to the traditional discretization as proposed in [2], except with min-pooled instead of sampled unaries. Proof. The constraints in [2, Eq. 18] have the form φ̂t(i) ≥ η(φ̂x(i))− ρ(γi), (6) ∥∥ j ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies

Convex relaxations of multilabel problems have been demonstrated to produce provably optimal or near-optimal solutions to a variety of computer vision problems. Yet, they are of limited practical use as they require a fine discretization of the label space, entailing a huge demand in memory and runtime. In this work, we propose the first sublabel accurate convex relaxation for vectorial multila...

متن کامل

Sublabel-Accurate Relaxation of Nonconvex Energies

We propose a novel spatially continuous framework for convex relaxations based on functional lifting. Our method can be interpreted as a sublabel–accurate solution to multilabel problems. We show that previously proposed functional lifting methods optimize an energy which is linear between two labels and hence require (often infinitely) many labels for a faithful approximation. In contrast, the...

متن کامل

On the convergence of 3D free discontinuity models in variational fracture

Free discontinuity problems arising in the variational theory for fracture mechanics are considered.AΓ -convergence proof for an r-adaptive 3Dfinite element discretization is given in the case of a brittle material. The optimal displacement field, crack pattern and mesh geometry are obtained through a variational procedure that encompasses both mechanical and configurational forces. Possible ex...

متن کامل

A Fourth Order Formulation of DDM for Crack Analysis in Brittle Solids

A fourth order formulation of the displacement discontinuity method (DDM) is proposed for the crack analysis of brittle solids such as rocks, glasses, concretes and ceramics. A fourth order boundary collocation scheme is used for the discretization of each boundary element (the source element). In this approach, the source boundary element is divided into five sub-elements each recognized by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017